technology transfer fact sheet

Center for Wood Anatomy Research USDA Forest Service • Forest Products Laboratory • One Gilford Pinchot Drive • Madison, Wisconsin 53705–2398

Pseudotsuga menziesii (Mirb.) Franco Family: Pinaceae Douglas Fir

The genus *Pseudotsuga* contains about 7 species native to North America [2], and eastern Asia (China to Japan) [5]. The wood of pine can be separated microscopically into the white, red, yellow and the foxtail/pinyon pine groups. Douglas-fir is named for Henry Douglas (1798-1834), a Scottish botanist who traveled in North America. The word *Pseudotsuga* means 'false hemlock'', while *menziesii* is used in recognition of Archibald Menzies (1754-1842), a Scotch physician and naturalist, who discovered Douglas-fir in 1793 on Vancouver Island, British Colombia.

Other Common Names: abete di Douglas, abete odoroso d'America, abeto, acahuite, achahuite, alpine hemlock, black fir, blaue Douglas-tanne, blauwe Douglas, blauwe Douglas spar, blue Douglas-fir, British Columbia Douglas-fir, British Columbia pine, British Columbian pine, cahuite, Canadian Douglas-fir, coast Douglas-fir, Colorado Douglas-fir, Colorado pino real, Colorado real pino, Columbian pine, common Douglas, common Douglas-fir, cork-barked Douglas spruce, Douglasafenyo, Douglas, Douglas azul, Douglas bleu, Douglas des montagnes, Douglas du Colorado, Douglas glauca, Douglas pine, Douglas spruce, Douglas vert, Douglasfichte, Douglas-fir, Douglas-gran, Douglasia, Douglasia azzurra, Douglasia glauca, Douglasie, Douglaska, Douglaskuusi, Douglasspar, Douglastanne, Duglas, Duglazija, golden rod fir, gray Douglas, green Douglas, groene Douglas, grune Douglas-tanne, guallame, guayame, guayame Colorado, hallarin, hayarin, hayarin Colorado, inland Douglas-fir, interior Douglas-fir, Montana fir, Oregon, Oregon Douglas, Oregon Douglas, pin de i'Oregon pine, Oregon spruce, Pacific Coast Douglas-fir, Patton's hemlock, pin de Douglas, pin de i'Oregon, pin d'Oregon, pinabete, pinho de Douglas, pino de corcho, pino de Douglas, pino de Oregon, pino Oregon, pino real, Puget Sound pine, red fir, red pine, red spruce, Rocky Mountain Douglas-fir, Santiam quality fir, sapin de Douglas, spruce, yellow Douglas-fir, yellow fir, yellow national fir.

Distribution: The range of Douglas-fir extends from the Rocky Mountains to the Pacific coast and from Mexico to central British Columbia. The Douglas-fir production comes from the Coast States of Oregon, Washington, and California and from the Rocky Mountain States.

The Tree: Douglas-fir reaches heights of 250 feet (76.20 m), with a diameter of 6 feet (1.83 m), in coastal stands that are between 200 and 800 years old. The largest intact specimen was recorded at 330 feet (100.58 m) near Littlerock Washington.

General Wood Characteristics: The wood of Douglas-fir varies widely in weight and strength. When lumber of high strength is needed for structural uses, selection can be improved by applying the density rule. This rule uses percentage of latewood and rate of growth as they affect density. For equivalent knot sizes, the higher density generally indicates stronger wood. Sapwood of Douglas-fir is narrow in old-growth trees but may be as much as 3 inches (7.62 cm) wide in second-growth trees of commercial size. Fairly young trees of moderate to rapid growth have reddish heartwood and are called red-fir. Very narrow-ringed wood of old trees may be yellowish brown and is known on the market as yellow-fir.

Weight^a

			Weight	
Location	мс ^b	SpGr ^C	lb/ft ³	
Coast	Green(37%) ^d	0.45	38	

	12%	$0.48 \\ 0.51$	34 NA	
	Ovendry	0.31	INA	
Interior West	Green(34%) ^d	0.46	38	
	12%	0.50	31	
	Ovendry	0.52	NA	
Interior North	Green(30%) ^d	0.45	35	
	12%	0.48	30	
	Ovendry	0.50	NA	
Interior South	Green(30%) ^d	0.43	NA	
	12%	0.46	32	
	Ovendry	NA	NA	

^aReference (187).

^b Moisture Content. ^c Specific Gravity. ^dReference (177).

Mechanical Properties^a

Property	Green	Dry
Coast		
MOE	$1.56 \pm 10^{6} \text{ lbf/in}^{2}$	$1.95 \neq 10^{6} \text{ lbf/in}^{2}$
MOR	$7.70 \neq 10^3 \text{ lbf/in}^2$	$12.4 \neq 10^{3} \text{ lbf/in}^{2}$
C	$3.78 \pm 10^3 \text{ lbf/in}^2$	$7.23 \neq 10^3 \text{ lbf/in}^2$
C^	$0.38 \neq 10^3 \text{ lbf/in}^2$	$0.80 \neq 10^3 \text{ lbf/in}^2$
WML	7.6 in-lbf/in^3	9.9 in-lbf/in ³
Hardness	500 lbf	710 lbf
Shear	$0.90 \neq 10^3 \text{ lbf/in}^2$	$1.13 \neq 10^3 \text{ lbf/in}^2$
Interior West		
MOE	$1.51 \ge 10^{6} \text{ lbf/in}^{2}$	$1.83 \neq 10^{6} \text{ lbf/in}^{2}$
MOR	$7.70 \ge 10^3 \text{ lbf/in}^2$	$12.6 \neq 10^3 \text{ lbf/in}^2$
C	$3.87 \pm 10^3 \text{ lbf/in}^2$	$7.43 \neq 10^3 \text{lbf/in}^2$
C^	$0.42 \neq 10^3 \text{ lbf/in}^2$	$0.76 \neq 10^3 \text{ lbf/in}^2$
WML	7.2 in-lbf/in ³	10.6 in-lbf/in^3
Hardness	510 lbf	660 lbf
Shear	$0.94 \neq 10^3 \text{ lbf/in}^2$	$1.29 \ge 10^3 \text{ lbf/in}^2$
Interior North		
MOE	$1.41 \ge 10^{6} \text{ lbf/in}^{2}$	$1.79 \ge 10^6 \text{lbf/in}^2$
MOR	$7.40 \ge 10^3 \text{ lbf/in}^2$	$13.1 \neq 10^3 \text{lbf/in}^2$
$C_{ }$	$3.47 \neq 10^3 \text{ lbf/in}^2$	$6.90 \neq 10^3 \text{ lbf/in}^2$
C^	$0.36 \neq 10^{3} \text{ lbf/in}^{2}$	$0.77 \neq 10^3 \text{ lbf/in}^2$
WML	8.1 in-lbf/in ³	10.5 in-lbf/in^3
Hardness	420 lbf	600 lbf
Shear	$0.95 \neq 10^3 \text{ lbf/in}^2$	$1.40 \neq 10^3 \text{ lbf/in}^2$
Mechanical Pro	perties, cont'd	
Duomonter	Care a	D

Mechanical Properties, cont d				
Property	Green	Dry		
Interior South				
MOE	$1.16 \ge 10^6 \text{ lbf/in}^2$	$1.49 \ge 10^{6} \text{ lbf/in}^{2}$		
MOR	$6.80 \neq 10^3 \text{ lbf/in}^2$	$11.9 \neq 10^3 \text{ lbf/in}^2$		

$C_{ }$	$3.11 \neq 10^3 \text{ lbf/in}^2$	$6.23 \neq 10^3 \text{ lbf/in}^2$	
C^	$0.34 \neq 10^3 \text{ lbf/in}^2$	$0.74 \neq 10^3 \text{ lbf/in}^2$	
WML	8.0 in-lbf/in^3	9.0 in-lbf/in ³	
Hardness	360 lbf	510 lbf	
Shear	$0.95 \neq 10^{3} \text{ lbf/in}^{2}$	$1.51 \neq 10^{3} \text{ lbf/in}^{2}$	

^a Reference (187) (2-inch standard).

Drying and shrinkage^a

	Percentage of shrinkage (green to final moisture content)				
	(green to	final moisture	e content)		
Type of shrinkage	0% MC ^b	0%MC ^c	0%MC ^d		
Tangential	7.6	6.9	7.5		
Radial	4.8	3.8	4.8		
Volumetric	12.4	10.7	11.8		

^aReference (187).

^b Coast.

^c Interior North.

^d Interior West.

Coastal timbers may contain red-brown chemical stains, gray sapwood stains, ring failure or honeycomb, possibly due to wood extractives, slow drying or wetwood (infrequent occurrence)(177).

Kiln drying schedule

Conventional Temperatures/Moisture Content-Controlled Schedules^a

Condition	4/4, 5/4	6/4	8/4	10/4	12/4	British Schedule
	stock	stock	stock	stock	stock	4/4 stock
Lower Grades						
Coastal	T7-A4	NA	T7-A4 ^b	NA	NA	NA
Inland	T9-A4 ^C	NA	T9-A4 ^c	NA	NA	NA
Upper Grades						
Coastal	T11-A4	NA	T10-A3	T5-A1	T5-A1	NA
Inland	NA	NA	NA	NA	NA	NA
-						

^aReference (28 & 177).

^BMaximum wet-bulb depression 25^oF, Reference (177).

^CMaximum wet-bulb depression 20^oF, Reference (177).

Conventional Temperatures/Time-Controlled Schedules^a

	Lov	ver Grades	5	Upper Grades			
Condition	4/4, 5/4	6/4	8/4	4/4, 5/4	6/4	8/4	12/4, 16/4
	stock	stock	stock	stock	stock	stock	stock
Standard	291 ^b	291 ^c	291 ^c	294 ^d	294 ^d	294 ^d	288

^aReference (28).

^BOmit step 1 and reduce step 3 to 12 hours, reference (28).

C_{Reduce step 3 to 12 hours, reference (28).}

D_{Omit} step 1 for vertical grain, reference (28).

High	Tempe	raturesa
nigii	rempe	Tatures

Condition	4/4, 5/4 stock	6/4	8/4 stock	Other
		stock		Products

Standard	400 ^{b,c,d,e}	400 ^{b,e}	400 ^{b,e} /414	NA
			е	

^aReferences (28).

^bSchedule for western species is for 6 inches and narrower in width, for use with common and dimension grade, except as noted for upper grades, reference (28).

^cReduce step 1 and 2 to 6 hours for 4/4-5/4 for western species, references (28).

^dIn upper grades, use only vertical garin stock, references (28).

^eCan be dried with western larch, references (28).

Working Properties: No information at this time.

Durability: Rated as moderately resistant to decay. (187)

Preservation: No information at this time.

Uses: Douglas-fir is used mostly for building and construction purposes in the form of

lumber, timbers, piles, and plywood. Considerable quantities go into railroad crossties, cooperage stock, mine timbers, poles, and fencing. Douglas-fir lumber is used in the manufacture of various products, including sash, doors, laminated beams, general millwork, railroad-car construction, boxes, pallets, and crates. Small amounts are used for flooring, furniture, ship and boat construction and tanks. Douglas-fir plywood has found ever-increasing usefulness in construction, furniture, cabinets, and many other products.

Toxicity: Can cause dermatitis, septic splinter wounds, or contact eczema. (69, 150 & 207)

Additional Reading & References Cited (in parentheses):

 Boone, R. S.; Kozlik, C. J.; Bois, P. J., and Wengert, E. M. Dry kiln schedules for commercial woods - temperate and tropical. Madison, WI: USDA Forest Service, FPL-GTR-57; 1988.

29. Bormann, B. T. Douglas-Fir an American wood. Washington, DC: USDA Forest Service, FS-235; 1984.

69. Hausen, B. M. Woods injurious to human health. A manual. New York, NY: Walter de Gruyter; 1981.

150. Mitchell, J. and Rook, A. Botanical dermatology: plants and plant products injurious to the skin. Vancouver, BC: Greenglass Ltd.; 1979.

184. Summitt, R. and Sliker, A. CRC handbook of materials science. Vol. 4. Boca Raton, FL: CRC Press, Inc.; 1980.

187. USDA. Wood handbook: wood as an engineering material. Madison, WI: USDA Forest Service, FPL Ag. Handbook No. 72; 1974.

207. Woods, B. and Calnan, C. D. Toxic woods. British Journal of Dermatology. 1976; 95(13):1-97.